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Prescribing Gaussian curvature under conformal
changes of the metric

A classical problem in geometry is the prescription of the Gaussian curvature
on a compact Riemannian surface Σ under a conformal change of the metric.

Denote by g̃ the original metric and g = eug̃. The curvature then transforms
according to the law:

−∆u + 2K̃(x) = 2K(x)eu,

where ∆ = ∆g̃ is the Laplace-Beltrami operator and K̃, K stand for the
Gaussian curvatures with respect to g̃ and g, respectively.

The solvability of this equation has been studied for several decades: Berger,
Kazdan and Warner, Moser, Aubin, Chang-Yang...
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Our problem

Let Σ be a compact surface with boundary. In this talk we consider the
problem of prescribing the Gaussian curvature of Σ and the geodesic
curvature of ∂Σ via a conformal change of the metric.

This question leads us to the boundary value problem:{
−∆u + 2K̃(x) = 2K(x)eu, x ∈ Σ,
∂u
∂ν

+ 2h̃(x) = 2h(x)eu/2, x ∈ ∂Σ.

Here eu is the conformal factor, ν is the normal exterior vector and

1 K̃, h̃ are the original Gaussian and geodesic curvatures, and
2 K, h are the Gaussian and geodesic curvatures to be prescribed.
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Antecedents

The higher order analogue: prescribing scalar curvature S on Σ and
mean curvature H on ∂Σ.
The case S = 0 and H = const is the well-known Escobar problem:
Ambrosetti-Li-Malchiodi, Escobar, Han-Li, Marques,...

The case h = 0: Chang-Yang.

The case K = 0: Chang-Liu, Liu-Huang...
The blow-up phenomenon has also been studied: Guo-Liu,
Bao-Wang-Zhou, Da Lio-Martinazzi-Rivière...

The case of constants K, h:
A parabolic flow converges to constant curvatures (Brendle).
Classification of solutions in the annulus (Jiménez).
Classification of solutions in the half-plane (Li-Zhu, Zhang,
Gálvez-Mira).

Our aim is to consider the case of nonconstant K, h. The only results we are
aware of are due to Cherrier, Hamza.
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Preliminaries

By the Gauss-Bonnet Theorem,
ˆ

Σ

Keu +

˛
∂Σ

heu/2 =

ˆ
Σ

K̃ +

˛
∂Σ

h̃ = 2πχ(Σ),

where χ(Σ) is the Euler characteristic of Σ.

It is easy to show that we can prescribe h = 0, K = sgn(χ(Σ)). Then:{
−∆u + 2K̃ = 2K(x)eu, x ∈ Σ,
∂u
∂ν

= 2h(x)eu/2, x ∈ ∂Σ,

where K̃ = sgn(χ(Σ)).

We are interested in the case of negative K. For existence of solutions, we
will focus on the case χ ≤ 0.
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The variational formulation

The associated energy functional is given by I : H1(Σ)→ R,

I(u) =

ˆ
Σ

(
1
2
|∇u|2 + 2K̃u + 2|K(x)|eu

)
− 4
˛
∂Σ

heu/2.

For the statement of our results it will be convenient to define the function
D : ∂Σ→ R,

D(x) =
h(x)√
|K(x)|

.

The function D is scale invariant.
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A trace inequality

Proposition
For any ε > 0 there exists C > 0 such that:

4
ˆ
∂Σ

h(x)eu/2 ≤ (ε+ max
p∈∂Σ

D+(p))

[ˆ
Σ

1
2
|∇u|2 + 2|K(x)|eu

]
+ C.

In particular, if D(p) < 1 ∀ p ∈ ∂Σ, then I is bounded from below.

Assume that h > 0 is constant, and take N a vector field in Σ such that
N(x) = ν(x) on the boundary, |N(x)| ≤ 1. Then,

4
ˆ
∂Σ

heu/2 = 4
ˆ
∂Σ

heu/2N(x) · ν(x)

= 4
ˆ

Σ

heu/2
[

div N +
1
2
∇u · N

]
≤ C

ˆ
Σ

eu/2 + 2
ˆ

Σ

heu/2|∇u|

≤ C
ˆ

Σ

eu/2 + 2
ˆ

Σ

h2eu +
1
2

ˆ
Σ

|∇u|2.
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The case χ(Σ) < 0

Theorem
Assume that χ(Σ) < 0. Let K, h be continuous functions such that K < 0 and
D(p) < 1 for all p ∈ ∂Σ. Then the functional I is coercive and attains its
infimum.

By the trace inequality,

I(u) ≥
ˆ

Σ

ε|∇u|2 + 2ε|K(x)|eu + 2K̃u− C.

Since K̃ < 0, limu→±∞ 2δeu + 2K̃u = +∞, so I is coercive.

If χ(Σ) = K̃ = 0, I is bounded from below but not coercive!
The reason is that

´
Σ

un could go to −∞ for a minimizing sequence un.
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Minimizers for χ(Σ) = 0.
Theorem
Assume that χ(Σ) = 0. Let K, h be continuous functions such that K < 0 and:

1 D(p) < 1 for all p ∈ ∂Σ.
2
¸
∂Σ

h > 0.

Then I attains its infimum.

Observe that if un = −n, then: I(un) =
´

Σ
2|K(x)|e−n − 4

¸
∂Σ

he−n/2 ↗ 0.

∮ eu/2

inf I
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Min-max for χ(Σ) = 0.
Theorem
Assume that χ(Σ) = 0. Let K, h be continuous functions such that K < 0 and:

1 D(p) > 1 for some p ∈ ∂Σ.
2
¸
∂Σ

h < 0.

Then I has a mountain-pass geometry.

∮ eu/2

inf I
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Blow-up versus compactness

Here the (PS) condition is not known to hold. By using the monotonicity trick
of Struwe, we can obtain solutions of perturbed problems.

The question of compactness or blow-up for this kind of problems has
attracted a lot of attention since the works of Brezis-Merle, Li-Shafrir, etc.

Let un be a blowing-up sequence (namely, sup{un(x)} → +∞) of solutions to
the problem: {

−∆un + 2K̃n(x) = 2Kn(x)eun , in Σ,
∂un

∂ν
+ 2h̃n(x) = 2hn(x)eun/2, on ∂Σ.

(1)

Here K̃n → K̃, h̃n → h̃, Kn → K, hn → h in C1 sense, with K < 0. By
integrating:

ˆ
Σ

Kneun +

˛
∂Σ

hneun/2 =

ˆ
Σ

Kn +

˛
∂Σ

hn → χ0 = 2πχ(Σ).

Hence there could be compensation of diverging masses!!
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A blow-up analysis

Theorem
Assume that un is unbounded from above and define its singular set:

S = {p ∈ Σ : ∃ xn → p such that un(xn)→ +∞}. (2)

1 S ⊂ {p ∈ ∂Σ : D(p) ≥ 1}.

2 If
´

Σ
eun is bounded, then there exists m ∈ N such that

S = {p1, . . . pm} ⊂ {D(p) > 1}.

In this case |Kn|eun ⇀
∑m

i=1 βiδpi , hneun/2 ⇀
∑m

i=1(βi + 2π)δpi for some
βi > 0. In particular, χ0 = 2πm.
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The infinite mass case

3 If
´

Σ
eun is unbounded, there exists a unit positive measure σ on Σ such

that:

a)
|Kn|eun´
Σ
|Kn|eun

⇀ σ,
hneun/2¸
∂Σ

hneun/2 ⇀ σ|∂Σ.

b) supp σ ⊂ {p ∈ ∂Σ : D(p) ≥ 1, Dτ (p) = 0}.

4 If there exists m ∈ N such that ind(un) ≤ m for all n, then S = S0 ∪ S1,
where:

S0 ⊂ {p ∈ ∂Σ : D(p) = 1, Dτ (p) = 0},
S1 = {p1, . . . pk} ⊂ {D(p) > 1 and Φ(p) = 0}, k ≤ m.

If moreover χ0 ≤ 0, then S1 is empty.
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Back to the case χ(Σ) = 0.

Theorem
Assume that χ(Σ) = 0. Let K, h be C1 functions such that K < 0 and:

1 D(p) > 1 for some p ∈ ∂Σ.
2
¸
∂Σ

h < 0.

3 Dτ (p) 6= 0 for any p ∈ ∂Σ with D(p) = 1.

Then I has a mountain-pass critical point.

We obtain solutions of perturbed problems of mountain-pass type, hence
they have Morse index at most 1 ([Fang-Ghoussoub, 94, 99]).

Those solutions cannot blow-up so that they converge to a true solution of
our problem.
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Obstructions to existence

Proposition (Jiménez 2012)
If Σ is an cylinder and K = −1, h1 and h2 are constants, then our problem is
solvable iff

1 h1 + h2 > 0 and both hi < 1 (minima).
2 h1 + h2 < 0 and some hi > 1 (mountain-pass).
3 h1 = 1, h2 = −1 or viceversa.

Proposition
Let Σ be a compact surface with boundary, and assume that
h(p) >

√
|K−(q)| for all p ∈ ∂Σ, q ∈ Σ. Then Σ is homeomorphic to a disk.
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A classification result in the half-plane

Theorem (Gálvez-Mira 2009)
Let u be a solution of:

{
−∆u = 2K0eu in R2

+,
∂u
∂ν

= 2h0eu/2 in ∂R2
+,

=⇒

{
−∆u = −2eu in R2

+,
∂u
∂ν

= 2D0eu/2 in ∂R2
+.

with D0 =
h0√
|K0|

. Then the following holds:

If D0 < 1 there is no solution.

If D0 = 1 the only solutions are:

u(s, t) = 2 log
( λ

1 + λt

)
, λ > 0, s ∈ R, t ≥ 0.
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A classification result in the half-plane

If D0 > 1, then:

u(z) = 2 log
( 2|g′(z)|

1− |g(z)|2 ,
)
,

where g is locally injective holomorphic map from R2
+ to a disk of

geodesic curvature D0 in the Poincaré disk H2. For instance, to B(0,R)

with D0 = 1+R2

2R .

Moreover, g is a Möbius transform if and only if

either
ˆ
R2
+

eu < +∞ and / or
˛
∂R2

+

eu/2 < +∞.

In such case u can be written as:

u(s, t) = 2 log
( 2λ

(s− s0)2 + (t + t0)2 − λ2

)
, t ≥ 0,

where λ > 0, s0 ∈ R, t0 = D0λ. We call these solutions “bubbles".
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Passing to a limit problem in the half-plane

Let us recall the definition of the singular set:

S = {p ∈ Σ : ∃ yn ∈ Σ, yn → p, un(yn)→ +∞}.

Proposition
Let p ∈ S. Then there exist xn ∈ Σ, xn → p such that, after a suitable
rescaling, we obtain a solution of the problem in the half-plane in the limit.

In particular S ⊂ {p ∈ ∂Σ : D(p) ≥ 1}.

In the Lioville equation, if the mass is finite, then a key integral estimate
([Brezis-Merle, 1991]) implies that S is finite. Hence one can take xn as local
maxima ([Li-Shafrir, 1994]).

Here the idea is to choose a good sequence xn, even if they are not local
maxima!
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Choosing good sequences

Let us fix p ∈ S. Via a conformal map we can pass to either B0(r) or B+
0 (r).

By definition there exist yn ∈ Σ with yn → p and un(yn)→ +∞. Define:

ϕn = e−
un
2 , εn = e−

un(yn)
2 → 0.

By Ekeland variational principle there exists a sequence xn such that

e−
un(xn)

2 ≤ e−
un(yn)

2 ,

|xn − yn| ≤
√
εn,

e−
un(xn)

2 ≤ e−
un(z)

2 +
√
εn |xn − z| for every z ∈ B.

The last conditions implies that, when we rescale, the rescaled functions are
bounded from above, so we can pass to a limit.

Since K(p) < 0, there is no entire solution of −∆u = 2K(p)eu in R2.

Hence p in ∂Σ, the limit problem is posed in a half-plane and D(p) ≥ 1.
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Infinite mass

Proposition
Assume that ρn =

´
Σ
|Kn|eun → +∞,

¸
∂Σ
|h|eun/2 → +∞. Then there exists a

positive unit measure σ on ∂Σ such that:

|Kn|eun

ρn
⇀ σ,

hneun/2

ρn
⇀ σ.

Multiplying the equation by φ ∈ C2(Σ) and integrating:

2
˛
∂Σ

hneun/2φ− 2
ˆ

Σ

|Kn|eunφ = O(1) +

ˆ
Σ

un∆φ+

˛
∂Σ

∂φ

∂ν
un︸ ︷︷ ︸

o(ρn)

.

We use a Kato-type inequality to estimate u−n .
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On the support of σ
Clearly supp σ ⊂ S ⊂ {p ∈ ∂Σ : D(p) ≥ 1}. Moreover, we have:

Proposition
The support of σ is contained in the set {p ∈ ∂Σ : Dτ (p) = 0}.

Let Λ0 be a connected component of ∂Σ. Via a conformal map, we can pass
to a problem in an annulus.

, ,
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Multiply the equation by ∇un · F, where F is a tangential vector field, to obtain:

˛
Λ0

(4hneun/2 − 4h̃n)(∇un · F)

=

ˆ
Σ

[4K̃n∇un · F + 4eun (∇Kn · F + Kn ∇ · F) + 2 DF(∇un,∇un)−∇ · F|∇un|2︸ ︷︷ ︸
??

].

We get rid of the Dirichlet term by using holomorphic functions F. Integrating
by parts and passing to the limit, we obtain:

˛
Λ0

Dτ

D
f dσ = 0,

where f = (F · τ). But f can be any arbitrary analytic function, and then
Dτσ = 0 as a measure.
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Morse index

This is all the information that we can obtain without further assumptions on
un.

From now on we assume that the sequence of solutions un has bounded
Morse index.

If un has bounded Morse index, the solutions of the limit problem obtained by
rescaling have finite Morse index.
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Morse index of the limit problem

Theorem

Let u be a solution of the problem:{
−∆u = −2eu in R2

+,
∂u
∂ν

= 2D0eu/2 in ∂R2
+.

(3)

Define:

Q(ψ) =

ˆ
R2
+

|∇ψ|2 + 2
ˆ
R2
+

euψ2 −D0

ˆ
∂R2

+

eu/2ψ2, and

ind(v) = sup{dim(E) : E ⊂ C∞0 (R2
+) vector space, Q(ψ) < 0 ∀ψ ∈ E}.

1 If D0 = 1, then ind(u) = 0, that is, u is stable.
2 If D0 > 1 and u is a bubble, then ind(u) = 1. Otherwise, ind(u) = +∞.

This theorem implies that infinite mass blow-up with bounded Morse index
occurs only if D(p) = 1, and the number of bubbles is limited.
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Morse index of the limit problem

If D0 = 1, ψ(s, t) = 1
1+t is a positive solution of the linearization.

If D0 > 1, then we pass to the problem posed in B(0,R) ⊂ H2:{
−∆γ + 2γ = 0, in B(0,R),
∂γ

∂ν
= λγ, in ∂B(0,R).

(4)

The Morse index is the number of eigenvalues λ smaller than D0.

The functions γi(z) = zi
1−|z|2 solve (4) with λ = D0.

The function γ(z) = 1+|z|2

1−|z|2 solves (4) with λ = 1
D0

.

For a convenient cut-off φ, ψ = φ(g ◦ γ) satisfies Q(ψ) < 0.

If moreover
¸
∂R2

+
eu/2 = +∞ we can choose φ to be 0 outside any

arbitrary compact set.
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Explicit examples of blow-up

Let us consider the problem:
−∆u = −2eu, in A(0; r, 1),
∂u
∂ν

+ 2 = 2h1eu/2, on |x| = 1,
∂u
∂ν
− 2

r = 2h2eu/2, on |x| = r.

Here K = −1 and h is constant on each component of the boundary. All
solutions of this problem have been classified ([Jiménez, 2012]).

For example, the function:

u(x) = log
(

4
|x|2(λ+ 2 log |x|)2

)
, for any λ < 0,

is a solution with h1 = 1 and h2 = −1. Observe that if λ tends to 0 then u
blows up at a whole component of the boundary.

The singular set S = {|x| = 1} is not finite.



The problem The variational formulation Blow up versus compactness Some ideas of the proof Comments and open problems

Explicit examples of blow-up

Let us consider the problem:
−∆u = −2eu, in A(0; r, 1),
∂u
∂ν

+ 2 = 2h1eu/2, on |x| = 1,
∂u
∂ν
− 2

r = 2h2eu/2, on |x| = r.

Here K = −1 and h is constant on each component of the boundary. All
solutions of this problem have been classified ([Jiménez, 2012]).

For example, the function:

u(x) = log
(

4
|x|2(λ+ 2 log |x|)2

)
, for any λ < 0,

is a solution with h1 = 1 and h2 = −1. Observe that if λ tends to 0 then u
blows up at a whole component of the boundary.

The singular set S = {|x| = 1} is not finite.



The problem The variational formulation Blow up versus compactness Some ideas of the proof Comments and open problems

A second example

Given any h1 > 1, γ ∈ N, there exists a explicit solution:

uγ(z) = 2 log
(

γ|z|γ−1

h1 + Re(zγ)

)
,

where h2 = −h1r−γ .

Those solutions blow up as γ → +∞, keeping h1 > 1 fixed. Also here
S = {|z| = 1} but now h1 > 1.

The asymptotic profile is:

u(s, t) = 2 log
(

e−t

h1 + e−t cos s

)
,

defined in the half-plane {t ≥ 0}. This is indeed a solution to the limit problem
in the half-space with K = −1 and h1 > 1, with infinite Morse index.
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Open problems

1 The necessity or not of the Morse index bound assumption.

2 Existence of blowing-up solutions in non-constant curvature cases.
Nonlocal effects are expected!

3 The case of the disk. Can we have coexistence of finite-mass and
infinite-mass blow-up?

4 Sign-changing curvatures.

5 Higher-order analogue.
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Muito obrigado pela sua atenção!
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